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BY 
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ABSTRACT 

This paper attempts to lay ba re  the underlying ideas used in  

various pattern classification algorithms reported in  the l i terature .  

It is shown that these algorithms can be classified according to the 

type of input information required and that the techniques of estimation, 

decision, and optimization theory can be used to effectively derive 

known as well as new resu l t s .  

The r e sea rch  reported in this work represents  an  expanded version 
of a talk of the same title given by the f i r s t  author at the Tenth 
Anniversary Seminar of the Statistical Department, Harvard University, 
Apr i l  1967. 
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I. Introduction 

Pa t te rn  classification o r  recognition covers a n  extremely broad 

spectrum of problems. 

of these a t  any given t ime. For example, there  is  the engineering 

aspect  of the pattern classification problem which is mainly concerned 

with the implementation and design of actual recognition devices. 

the other extreme, there  i s  the ar t i f ic ia l  intelligence aspect  of the 

problem which is concerned with the philosophical question of learning 

and intelligence. 

Similarly, the study of recognition mechanisms in biological systems 

is another accepted field of study [ 2 0 ] .  

touch on any of the above mentioned a r e a s .  

centrated on what might be called the analytical aspects  of the pattern 

classification problem. 

as one of making decisions under uncertainty and the mathematical  

techniques of decision, estimation, and optimization theory a r e  

brought to bear  on the problem. 

Most of us a r e  only concerned with one or  two 

At 

It is  both stimulating and controversial  [32,19]. 

In this paper,  we shall not 

Our survey will be con- 

By  this we mean  that the problem is viewed 

As it is usually understood, there  a r e  two fundamental problems 

associated with this aspect of pattern classification. 

(i) Characterization Problem. Given a pattern, signal o r  waveform, 

before any decision can be made concerning the pattern,  i t  is  often 

convenient as well as  necessary to convert the pattern, signal, o r  

waveform into a set  of features o r  attr ibutes which character ize  the 

pat tern under consideration. These features  a r e  usually denoted by 

the real variables x l ,  . . * ,  xm and the vector x i s  called the pa t te rn  

vector.  If we represent  the original scanned pattern o r  sampled 
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waveform as a vector z,  then the characterization or  feature selection 

problem can be simply but vaguely stated a s  finding a map f rom z to X, 

1. e . )  

x = 

such that x "adequately characterizesrl  the original z for purposes of 

classification but the dimension of x i s  much sma l l e r  than that of z .  

(ii) Abstraction and Generalization Problem. Once a se t  of fea tures  

has been selected, and cer ta in  data concerning the pat terns  and their  

features  a r e  given, the next problem is the determination of a decision 

function of these features  based on the data given such that 

1 x E c lass  H 

x E: c la s s  HO 

f (x)  = (1-2)" 

The problem of abstracting the necessary  information f rom the given 

data to produce the decision function f(x)"<'" is  called abstraction. 

Often t imes,  i t  is convenient but not absolutely necessa ry  to p rocess  

the given data sequentially o r  i teratively in  o r d e r  to determine f (x ) .  

This i terative procedure for calculating f(x) i s  known as ' t ra ining 

procedure I ,  'adaptation', o r  ' learning. Once a decision function 

f(x)  has been found, the generalization problem at tempts  to a s s e s s  

the goodness of the f(x)  through the determination of var ious e r r o r  

probabilities. Fundamental to this a s ses smen t  is the knowledge (given 

In the main, we shall  r e s t r i c t  ourselves  t o  two-class problems.  In 
section IX, we shall discuss  the extension to mul t i -c lass  problems.  

'w Sometimes f(x) i s  a l so  r e fe r r ed  to as a decis ion su r face  in  n 
dimensional x space. 

-f In the context of this paper,  they simply r ep resen t  entrenched 
terminology. 
be attached t o  these words.  

NO philosophical o r  metamathemat ica l  meaning should 
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1 or calculated) of the quantity P ( H  /x) = 1 - P(Ho/x). 

generalization problem can be viewed simply a s  that of the deter-  

mination of P(H /x). 

In fact, the 

1 

The distinction between problems (i) and (ii), of course,  is  

not always c lear  cut; nor can their solutions always be separately 

considered. 

solved clear ly  affects the success of an  abstraction algorithm and the 

ability of the resultant decision function to generalize. 

generally recognized that (i) is  really the principal problem in pat tern 

r e  c o gniti on. 

F o r  example, how well the characterization problem is 

In fact, it is  

The present paper is  devoted to a survey of the various algo- 

rithms for the solution of the abstraction problem of pattern classi -  

fication only. 

and generalization problems will be discussed only to the extent that 

they a r e  related t o  the abstraction problem. 

Without minimizing their importance, the characterization 

11. Types of Input Data 

The various abstraction algorithms to be discussed require  

different types of input data. 

and establish a common notation t o  be used in  the r e s t  of the paper.  

In this section we shall  l i s t  these 

1 
There a r e  two pattern classes,  H and Ho. The probability 

of occurence of patterns from the ith c l a s s  is  denoted by P(Hi). 

If this probability i s  not explicitly given, then we shall  assume it to 

be equal to 1/2, i. e . ,  both classes  occur equally often. 

vectors  will be denoted by x with the understanding that the compo- 

nents x. are features determined as a resul t  of the solution of the 

character izat ion problem. 

considered. 

The pattern 

1 

Four types of data concerning x will be 
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(i) Functional form of the condition density p(x/Hi, 6 ) .  

By this we  mean that the fo rm of the conditional density func- 

tions of x for both c lasses  is given to within the specification of a 

se t  of parameters  8. 

vectors  f rom both c lasses  a r e  gaussianly distributed with unknown 

mean and covariances. 

(ii) Pa rame te r s  of p ( x / ~ ~ ,  e ) ,  

Fo r  example, we may be given that the pat tern 

By this it i s  meant that the values of the pa rame te r s  8 in  ( i)  

a r e  a l so  known. 

(iii) Sample patterns with known classification. 

As par t  of the given data for the abstraction problem, one is  

often supplied with a set  of training sample pat terns  of known c lass i -  

fication. We denote the two se ts  

1 1 1 a 1  
{x (11, x ( 2 ) ,  . . . , x (n,))  = x (n , )  

0 A o  
{ x O ( l ) ,  x 0 W ,  0 " , x (no)) = x (no) " 

1 
In this c a s e  we have two se t s  of n and n 

and Ho, respectively. 

often joined to make a mat r ix ,  each row of which is a sample pa t te rn  

from one of the two c l a s ses  as  shown below: 

samples  for c l a s ses  H 1 0 

F o r  notational compactness,  the two s e t s  are 

A =  

1 x l ( l ) T  - 

1 x1 (2IT 

-1 -xo ( l )T  

T -1 -xo(n) 

(nl  t n ) x ( l  t m)  m a t r i x  
0 
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The f i rs t  column of ones and minus ones is used to indicate the known 

classification of the patterns. 

( iv) Samples of unknown classification. 

In so-called problems of training without a teacher ,  sample 

patterns of unknown classification a r e  given. 

simply indicated as 

In this case  they a r e  

A 
x(n) = W), x ( 4 ,  - - * 9 x(n)) 

In connection with (iii) and (iv) it is  always assumed that the samples 

are independently chosen. The order  of appearance of these patterns 

is of no significance. 

Depending on the combinations of ( i ) - ( iv)  that a r e  supplied, 

different abstraction algorithms resul t .  

classify and discuss  the various algorithms on the basis  of these 

input data and the natural  mathematical techniques used in each case.  

The following sections will 

111. Case A - Data Type (i) And (ii) Are  Given 

When the conditional density functions p(x/Hi, 6)  including the 

values of 8 a r e  given, the problem reduces to that of simple hypothesis 

testing in  statist ics.  

likelihood ratio defined as 

The basic quantity of in te res t  here  is the 

p ( x/Hi) L(x) = 
P(X/HO) 

(111-1) 

A decision function formed by comparing L(x) against a threshold 

value q , i. e. 

f(x) = L(x) - q (111- 2 )  

is known to be optimal for a variety of c r i t e r i a  depending on the 

specific value of q. F o r  example, (Selin Ch. 2, 1965 [43] ) .  
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(i) Neyman-pear son Criterion. 

Let X1 {x I f(x) 3 o} , and Xo {x I f(x) < o} and 

a s  j' p(x/Ho)dx = e r r o r  probability of type 1 

X1 

(111- 3) 

(III-4) 1 p 2 p(x/H )dx = e r r o r  probability of type 2 
X0 

If we selected the value of Q in  (111-2) to yield a fixed value of a, then 

the decision function f(x) has the property that it minimizes the value 

of p as compared t o  any other f(x) yielding the same  o r  smal le r  a. 

(ii) Bayes Criterion. 

If the prior probabilities of occurence of the two c l a s ses ,  P(Hi), 

as well a s  the cost of wrong decision C 

types, a r e  given, then selecting 

and C2 for the two e r r o r  1 

(111- 5) 

will minimize the average r i sk  of making wrong decisions.  

(iii) Minimax Criterion. 

i If the prior probabilities, P ( H  ), a r e  unknown, then we may  

wish to  choose the value of q so as to minimize the average r i s k  

against  the worst value of P ( H  ). i This is  given implicitly by 

C1a = c2p (111- 6 )  

Special Case  of the Gaussian p(x/Hi, e ) .  
i In the case when p(x/H , e )  a r e  gaussian,  the likelihood rat io  

can  be explicitly writ ten in  t e r m s  of the means ,  pi, and covariances 
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Z i ,  L = 0 ,  1 .  

customary t o  write f (x)  = lnL(x)  - l n q  and we have 

Since the logarithm function is monotone, i t  is a lso 

1 I =, I 
131 

t z l n  - - Inq  (111- 7)  

i. e .  the optimal decision functions a r e  quadratic. 

assume that 2 = Z = E ,  then Eq. (111-7) simplifies to 

If we furthermore 

1 0 

T -1 f (x)  = x (pl - p ) t constant t e r m  
0 

I 

d 

I 

A T  = a  x t a  
0 

( 111- 8 ) 

:;: 
a l inear  decision function. In communication terminology, we let  

components of x represent  the successive samples of a n  input wave- 

f o r m  which may  be a known signal plus noise o r  noise only. 

components of r'arr a r e  then the impulse response of a l inear d i scre te  

"matched fi l ter  

decision function f(x). 

tecting the presence of a known signal in  gaussian noise. 

The 

whose output at a given time is the value of the 

This i s  the solution to the problem of de- 

A l inear decision function of the type of Eq. (111-8) a l so  a r i s e s  

naturally in other pattern classification approaches to be described 

later. 

popularity. 

tion of the best  l inear decision function based on the given input data. 

For the gaussian case  discussed here ,  this question has been r e -  

Their ease of implementation is a major  factor of their  

In fact ,  one is  often led to  consider only the determina- 

solved by Anderson and Bahadur (1 962) .  P I  

'; "a" here  is not to be confused with the a of Eq. (111-3). 
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Other Optimal Quadratic f(x) 

A quadratic f(x) of the type of Eq. (111-7) is  actually optimal’k for  

the more  general type of distributions than gaussian. 

generalizations have been studied by Cooper [14,13]. 

case  where p(x/Hi) is given by 

Some of these 

Consider the 

1 

(In-9) 

where h is a function integrable in n-space and monotone, i. e.  h(a) 

decreases  monotonically for increasing a, o d a < Q’ , and Ai i s  a 

constant adjusted to insure 1 p(x/Hi)dx = 1 .  It can be shown that pi 

i 
and 2. a r e  the mean and covariance mat r ices  respectively of p(x/H ) and 

that the c lass  encompasses a wide range of distributions including the 

1 

normal,  Laplace, and rectangular distributions.  In the special  case  

when the determinants I Z I = I L; I ,  then the optimal f(x) is the opti- 

m a l  separating surface for spherical  normal,  P e a r s o n  I1 and VI1 types 

of distributions [ 131. 

Se que ntial De c i s i  on P roc e dur e s 

1 0 

In many classification problems,  the features  o r  a t t r ibutes  of a 

sample pattern, x 

the x.’s a r e  the sampled value of a waveform in  t ime.  

it may be advantageous to a r range  to examine the fea tures  in  de-  

a r e  received sequentially in  a natural  way, e .  g. i’ 

In other cases ,  
1 

creasing order  of significance with the hope that a c lass i f icat ion can 

be reliably made without having to go through all the features  of a 

pattern mos t  of the t ime.  In e i ther  case ,  one is led to the considera-  

tion of sequential decision functions, 

’k In the sense of Bayes c r i te r ion  with equal cos t  of misclassif icat ion.  
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The main  tool used he re  is the sequential probability ra t io  tes t  

(SPRT) developed by Wald [49]. 

(111-1). Let 

This i s  a natural  extension of Eq. 

1 
P b 1 ,  - * - , Xi/H 1 

L.(x)  = A L ( x l , .  . . , x . )  = (111- 10) 
J p(xl ,  . . , x./Ho) J 

Instead of a binary choice of decisions af ter  j features,  we use the 

following analog of Eq. (111-2). 

L j ( X )  - qA 3 0 
1 

x e H  

Lj(X) - qB =s 0 x E Ho (111-11) 

It i s  well known that i f  we set  

j t l  Observe the next feature x 

-P - 
'B 1 - a  (111- 12) 

then the decision function of (111- 11) has  the property that among all 

sequential t es t s  with the same specified a and p this SPRT wi l l  

requi re  the smal les t  number of fea tures  to reach  a classification 

decision on the average 
.L 

Computationally, the main problem in the use of SPRT i s  the 

recurs ive  evaluation of the likelihood function. In general, for r e a l  

t ime  application one would like a formula of the type 

L j t l (x )  = L.(x)  J ( t e r m  involving x j t l  only) (111-13) 

': The above statement is t rue  to  within the accuracy of the so-called 
"excess over boundary" represented by L . (x )  - qA or  L . (x )  - qB [49I*  J J 
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o r  

I ~ [ L ~ + ~ ( X ) ]  = I ~ [ L . ( x ) ]  t In[xjtl t e rm]  (111-13') 
J 

This turns  out to be possible i f  the x.Is belong to a fa i r ly  general  c lass  

of gaussian sequences. In particular,  let  

1 

x . = H y  t v  
J j j  

(111- 14) 

where v .  and w .  a r e  independent white gaussian sequences with 
J J 

T E(v.) = 0 E(v.v. ) = R.6 
J J 1  J iJ 

T - W.) ] = Qj6ij - 
1 

E(w.) = W E[(w - w.)(wi 
J j j J 

(111- 1 5 )  

i .  e .  the features a r e  noise corrupted l inear combinations of the state 

of a vector gauss-markov sequence. 

sufficient statist ics of the features exist  in the form of conditional 

mean  and covariances of the state y, (9,P ), that is 

Thena  set  of finite dimensional 

Y 

P(Xj/X1, * * * , x j - l ;  H i ) <=' P(Xj/?, py; H i ) (111-16) 

These statistics can be recursively updated in t e r m s  of the IIKalman 

F i l t e r "  well known in control theory [26]. 

The relationship (III-16) and the observation 

(111- 1 7 )  

immediately leads to Eq. (111- 13).  

has  not been exploited to any great  extent in  the pat tern classification 

l i terature .  

This powerful technique apparently 
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Fu  and his associates  have studied various aspects  of sequential 

methods as applied to pat tern recognition. 

reorder ing of the unobserved features so as to  next observe the feature 

containing most  significant information about the pattern.  

forward SPRT i s  then applied to the features  selected.  

with two paral le l  stopping boundaries a s  i n  Eq. (111-11) one can easily 

compute the average number of features required for a decision. 

Chen [IO] considered the 

A straight- 

F o r  a SPRT 

This,  

however, does not guarantee that the decision process  will terminate  

in  every  case .  In pract ice  it may not be possible to  observe more  than 

a finite number of features .  Chien [ l l ,  121 has suggested using a t ime 

varying stopping boundary to assure  a termination in a finite t ime.  

Consider the features  x 19x2, * * - ' X n  approximated by a continuous 

t ime function x( t ) .  

samples  f rom one of the two stochastic p rocesses  H o r  H . Again 

the likelihood rat io  can be formed and a continuous analog of a SPRT 

Our two hypotheses now involve determining x(t)  as 
0 1 

used for decision purposes:  

The  modified SPRT is stated by the following inequalities 

(111 - 18) 

(111-19) 

where Q ( t )  and Q ( t )  are  nondecreasing and nonincreasing (respectively) 

functions of t ime.  The decision is made as to c l a s s  H o r  H when 

left o r  right inequality is violated. 

functions of observation t ime it  is possible to insure  that a decision 

is reached in  a finite time. 

B A 
0 1 

By making r)  ( t )  and qg(t) A 
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The expected t ime of reaching a decision and the probabilities 

of e r r o r ,  of course, w i l l  be different 

they may  be calculated and controlled 

One form for qA and qB m a y  be 

lnqA(t) = -a( l  - t /T) 
r a 

'b lnqB(t) = b( l  - t/T) 

G 
a' 'b where o ~ t ~ T ,  o < r  

from the usual SPRT. But 

in  advance. 

the following 

(III-20) 

1, a > o ,  b > o .  

T is the preassigned time at  which the test  is  truncated. 

the expected termination t ime for MSPRT"' by E ' ( tT)  and E(tT)  for  a 

standard SPRT, and by a! and PI the misclassification probabilities of 

a MSPRT. 

test  and the MSPRT begin a t  the same point then 

Let us denote 

If a and (3 a r e  very small  and the boundaries of the Wald 

and 

I brbE(tT)  ' T t rbE(tT)  at= a 

Therefore the expected t ime of termination is reduced and is  

controlled by the parameter  r 

creased.  

while the e r r o r  probability has  in- b' 

If i t  is desired that the same e r r o r  probabilities be 

achieved in both tes t s ,  the boundaries of a MSPRT should begin at a 

higher value than those in Wald's SPRT. 

-~ 
'k Modified Sequential Probability Ratio Tes t .  

.. 
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By arbi t rar i ly  assuming the form for  the stopping boundary with 

undetermined parameters ,  e.g. Eq. (111-ZO) ,  an  optimal MSPRT w. r .  t .  

the assumed s t ructure  can be designed. If we know the costs  of 

continuing the observations and the cost  of making a wrong decision, 

using available information at every instant the idea of dynamic pro- 

gramming can be used to a r r ive  at the best  stopping boundary using 

the standard idea of backward sweep and the principle of optimality. 

In a practical  situation, this may resul t  in  excessively large amounts 

of data that cannot be handled. Chien [ I l l  has  suggested some proce- 

du res  to reduce the total  data to be handled a t  any stage. 

Summarizing, we may say that case  A is characterized by direct  

Because application of decision-theoretic ideas  to pattern recognition. 

of the assumed availability of prior data, usually no i teration is in- 

volved in  the determination of the decision function o r  separating 

su r  fac e .  

IV. Case B - Data Type (i) and (iii) Are  Given 

When the functional form of conditional density function p(x/Hi, e )  
is given but 8 a r e  unknown parameters ,  the obvious modification 

involves the use of the given sample patterns with known classification 

t o  estimate these parameters  before performing hypothesis testing. 

The basic quantity 

defined as: 

L(x)  = 

of interest  st i l l  is  the likelihood ratio which i s  now 

(IV- 1 )  
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We may write 

Assuming the computation of ( IV-2)  is straightforward though it may 

be laborious, the determination of the conditional density p(8/x (n),  H ) 
i i 

becomes the principal problem. We have by Bayes Rule, 

where the simplification in  the second step comes about due to the 

assumed "conditional independence I t  of the sample patterns.  ::C 

We have also dropped the explicit dependence of p[e/xi(n)] in Hi 

for  notational simplicity. It i s  understood that ( I V - 3 )  has to be ca r r i ed  

out for each class .  

Equation ( I V - 3 )  i s  a recursive computational procedure which 

The computational is often re fer red  to as "learning with teacher .  

feasibility of (IV-3) depends cri t ically on the existence of a fixed 

dimensional sufficient statist ic for the relevant p r io r  and poster ior  

density functions. 

pute recursively a vector, Oi 

In other words, one would like to be able to com- 
A 

with the property that n '  

i 
'iC By conditional independence we mean  p(xi(n)/e) = p[xi(n)/6, x (n - 1) .  . . , 
xi ( l ) ] .  
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Then instead of doing recursion on functions which is the case  for  

Eq. (IV-3), one is only concerned with updating a set  of numbers,  

gi P r i o r  and posterior density functions which satisfy this require-  n' 

ment  a r e  called conjugate o r  reproducing pa i rs .  They have been 

extensively studied by Raiffa and Schlaifer (1 960)[401 and Spragin 

(1963)[459461. It can be shown that in  the limit of a n  infinite number 

of learning samples,  the reproducing densities have the property that 

(IV-5) 

in  some appropriate sense.  Thus, this learning scheme used with any 

of the decision functions of case A is  a t  least  asymptotically optimal 

and in  the limit produces results as good a s  if 8 were known. In 

fact, i f  one interprets  the a and p as average e r r o r  probabilities with 

(IV-6)  

then optimality for  a finite number of learning samples can a l so  be 

claimed. In general, however, the relationship between system pe r -  

formance and this learning scheme for finite samples is only quali- 

tative and has  not been investigated thoroughly. Putting it l e s s  

precisely,  we have the question: 

as a function of 8 and the best  estimate of 8, does the over-all  optimal 

decision function simply involve the replacement of 8 by i t s  es t imate?" 

"Given the optimal decision function 
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Special case of Gaussian p(x/Hi. 61 
i Consider the case  where p(x/Hi, 6 )  is  N(e , Z), C given, and let 

p(ei) be N(Gi, P). An easy  way to  t rea t  this problem will be to consider 

xi = ei t 
where v i s  N(0, C) . 
Then 

where 

i 
p(el/x (n) i s  gaussian with mean 8 n 

h ' i  

A 

n n-1 

(IV-7) 

n and covariance P 

gi (IV-8) 

i 

The numbers en and Pn constitute a set of 

This reduces p(x/xi, Hi) t o  a gaussian distribution with mean en and 

covariance P t Z. 

finite dimensional sufficient s ta t is t ics  for  x (n). 

n 
"i 

n 
i If C is  the same fo r  

the two categories,  we have the l inear  decision function as 

T f(x) = a  x t a 
0 

Note that equations (IV-8) and (IV-9)  a r e  a special  ca se  of the 

"Kalman Filter mentioned i n  Eqs ,  (111- 14) and (111- 15) (with @ = 0 

and w = 0) .  i This was first worked out independently by Abramson 

and Braverman.  P I  

If Z is  also unknown then the conjugate density is  gauss-wishart  

(Keehn, 1963)[281. If Ci a r e  known but different or  i f  ei a r e  time 

varying and can  be represented by a gauss-Markov process ,  then 

the theory of "Kalman F i l t e r "  can  again be direct ly  used to develop 

decision functions ( o r  equivalently es t imates  for 8 ) that  " t racks 'I the i 

va r ia t  ion s . 
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Special Case of Discrete  Distribution 

In the discussion so fa r ,  the learning of L(x),  Eq. (IV-1-IV-3) 

and the determination of f (x) ,  Eq. (111-2) a r e  two separate  problems. 

In cer ta in  simplified cases  it i s  possible to devise a "learning" 

procedure for  f (x)  directly.  Sklansky [44] has  considered the classi -  

fication of a sequence of independent binary signals transmitted over 

a noisy channel. 

function 

Let x(j) be the channel outputs, weconsider a decision 

f(x) = x - r) (IV-10) 

If the distribution of x a s  well as the choice of q values is discrete ,  

then for a given procedure of changing r) values af ter  each wrong 

decision, the probabilities of r) at the various permissible  values 

form a markov chain. 

chain can be straightforwardly calculated once the transit ion proba- 

bilities (i. e. the learning procedures) a r e  given. 

e r r o r  probabilities of f(x) follows. 

The property and convergence of this markov 

F r o m  this, the 

The performance of a scheme of this type depends to a large 

Kaplan and Sklansky [27] have extent on the type of updating f o r  q. 

analyzed the propert ies  of markov chains result ing from some typical 

learning procedures  specified on a n  intuitive basis .  

V. Case C - Data Type (i) and (iv) Are  Given 

In this ca se  again the given set  of sample patterns will be used 

to  learn  the pa rame te r s  8. 

unclassified,  bringing in additional uncertainty. 

type of learning is  often called "Learning Without Teacher .  

(1 962)[l  73 suggested a scheme which works in  this case  but the 

But now the given learning samples  a r e  

Appropriately this 

Daly 
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computation grows exponentially. 

scheme [22' 211 which was further extended by Pa t r ick  and Hancock 

Later  Fra l ic  suggested a bounded 

C371 . 

The basic ideas in section IV s t i l l  apply here.  W e  may  rewri te  

Eq. (IV-3) as 

* p(O/x(n - 1)  

The only difference occurs  in  the way we compute the ratio between 

"prior and "posterior If density. The added t e r m  essentially represents  

a form of "hedging. It 

Heuristically, we can see  the effect as follows. 

1 

Consider the 

case  where x(n) came from H . 
right-hand side of Eq. (V-1)  is of the form B+C A while with the addi- 

A tional knowledge about i t s  c lass ,  it will only be 5 , F o r  x(n) actually 

f rom H - . This 

tends to indicate that the process  of learning will be slower in  the 

case  of "Learning Without Teacher.  1' Essentially we are  paying for  

the uncertainty about the classification of learning samples  in  t e r m s  

of slower learning. 

learning IfWith" or  "Without 

Another example i l lustrates  this point. 

problem shown in Figure 1. 

Now the multiplying factor on the 

1 A , A t C  
B B t C  we generally have A > B and in  this ca se  - 

Viewed in  this light, the difference between 

teacher  is  conceptually minimal.  

Consider the classification 



n A P ( H ' / x )  = 

FIGURE 4 
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Suppose 

(i) A set  of samples X(n) was taken and cor rec t  classification w a s  

attached to these. 

(ii) A set  of samples x(n) w a s  taken and classifications were assigned 

according to the probability P(Hi/x). 

It i s  c lear  that for n + con0 difference in  learning behavior can be ob- 

served from using samples f rom (i) or  (ii) through the schemes of 

section IV. 

Computationally, Eq. (V-1 )  is  much more  difficult than i t s  

counterpart, Eq. (IV-3) .  With the presence of the additional t e r m s  

the "reproducing property"  is  lost .  

Interpretation of Eq. ( V - 1 )  a lso requi res  some ca re .  Since 

learning samples a r e  unclassified, Eq. (V-1)  cannot be ca r r i ed  out 

separately fo r  each c l a s s  i n  general. Let 6 represent  the unknown 

parameters  i n  both c lasses ,  and 8'. If, i n  addition, we assume 

p(e , e0/x(n)) = p(6 /X(n) ) p(eo/x(n)) then we can  separate  Eq. (V-1 )  1 1 

into ( V - 2 ) .  

i = 0 , l  

1 

P 

j = O  

i j Furthermore,  we can usually unite p(x(n)/6 , X(n - l ) ,  HJ) = p(x(n)/x(n - 11, H 

j # i. Note if p(ei/X(n)) is 

identical for  i = 0 , 1  and P(Ho) = P ( H  ) then no learning can take place. 

Eq. (V-2)  is essentially Fra l ick ' s  scheme.  
1 
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In the work of Pa t r ick  and H a n c ~ c k [ ~ ~ ]  the independence assumption 

1 of 6' and 8 

single Eq. (V-1)  with the resultant added complexity. The only 

is not made and computation must take place via the 

simplification is  to note that p(x(n)/8, X(n - l ) ,  HJ) = p(x(n)/x(n - l) ,  Hj) 

for j = 0, 1. 

The main advantage of learning without a teacher resul ts  f rom 

the fact  that when actual processing of data is  in  progress  (after 

initial learning from the sample patterns with classification) learning 

can s t i l l  continue and eventually a machine learning this way may do 

much better than a machine which is  trained only by initial learning 

with classified samples.  

Very little computational result  has been reported in  the l i t e ra -  

t u re  although our society seems t o  abound with r e a l  life examples of 

"learning without teacher"  o r  even "learning in  spite of the teacher.  If 

VI. Case D - Data Type (iii) Given Only (Deterministic Methods) 

The previous three sections had dealt with algorithms which 

requi re  knowledge of the s t ructural  forms  of the underlying distribu- 

t ions of the pat tern classes .  Crit icism has often been raised that i n  

pract ice  information concerning data type (i) is seldom available. 

has  prompted development of algorithms for the construction of 

decision functions which do not require  (i). 

find a n  f(x) which 'works well '  at least  on the given samples of known 

classification. 

This 

Basically the idea is to 

Two implicit assumptions of this approach a re :  

(a) A sufficient number of samples f rom both c lasses  a r e  available to 

constitute two representative groups. 
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( b )  The character is t ic  problem (i. e. x = + ( z ) )  has been solved using a 

sufficiently rich c lass  of + ( z ) ' s  so  that it i s  only necessary  to examine 

the c lass  of linear f(x) to solve the abstract ion problem. 

Assumption (ii) i s  often justified on the basis of the Weiers t rass  

approximation theorem. 

culty to the characterization problem since one is s t i l l  faced with the 

problem of finding a c lass  of complete + ( z ) ' s  which can efficiently 

r ep re  sent the pattern. Fur thermore ,  relatively little work has  been 

done on rendering the adjectives l'sufficient, representat ive,  and 

efficient" quantity i n  the above assumptions.  

Allais (1965)[41 and Watanabe (1965)L5O] bear  on this aspect  of the 

problem. 

However, this mere ly  t ransfers  the diffi- 

c151 The works of Cover (1964) 

We shall  discuss  them separat ly  la te r .  

Accepting (\a) and ( b ) ,  one can now res ta te  the problem of abs t r ac -  

tion more  succinctly. 

1 c lass  H , n in Ho, no t nl = N )  and consider the l inear  decision 

function 

Let there  be a total of N pat terns  given (nl i n  

0 

T 
f(x)  = a  x t a 0 (VI-1) 

The problem of determining a f(x) which classif ies  all the given pat terns  

cor rec t ly  i s  equivalent to the problem of finding a solution to the vector 

inequality 

Aw > o 

where 

A =  
1 

1 - - -5 - 
T 

-1 -x (i) 0 

(VI- 2)  

i = 1, ... , n l  ; c la s s  1 samples  

i = 1, . . . , no ; c la s s  o samples  

(VI- 3) 
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a 

a 
0 w =  - (VI-4)  

A common procedure for solving l inear  inequalities is to t r ans fo rm 

i t  into an  optimization problem the solution of which a l so  guarantees 

a solution for (VI-2) .  F o r  example, consider 

A 2 
Mir, J(w) = Min 1 1  [Awl  - AW 1 1  
W W 

(VI-  5) 

The solution for  (VI-2) ,  if it exists, must  correspond to the minimum 

of (VI-5) which is zero.  If we try a gradient descent procedure for 

minimizing (VI-5) ,  then we a r e  led immediately to 

o r  

w(j t 1)  = w(j) t p -  
w=w(j) 

N 
w(j t 1 )  = w(j) t p 7 x(i)[ Ix(i)Tw(j) I - xT(i)w(j)]  (V1-6l)'k 

L/ 

i = l  

Algorithms of the type of Eq. ( V I - 6 )  a r e  often r e fe r r ed  to a s  "many 

pa t te rn  adaptation" i n  the sense that a l l  given pat tern samples a r e  

used in  one i terat ion of the weighting vector rtwlt. The corresponding 

single pat tern adaptation of (VI-6)  i s  

F o r  P = 2, Eq. (VI-7) is simply the well-known peceptron algorithm 

(Novikoff (1 962))[361 which was originally developed on the simple idea 

'k In (VI-6)  we have abused our notation to let x(i) represent  the vector 

" 
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of reward and punishment and which is known to converge in  a finite 

number of steps. 

The idea of viewing a learning algorithm as a n  i terat ive and 

determinis t ic  optimization procedure for some cr i te r ion  function 

can be used to interpret  other a lgori thms and to discover new ones.  

In fact, our ability to c rea t e  new algorithms i s  only l imited by our 

ability to  find meaningful new cr i te r ia .  Table I identifies a se t  of 

algorithms as gradient procedures  for a corresponding se t  of c r i te r ion  

functions. 

The Generalization Question 

One of the basic problems of the algorithms of this type is  the 

question of generalization. 

mation, the only resu l t  along this line seems  to be the important 

resul t  of Cover (1q64)[l5’. Cover shows that in  general  the number 

of samples ,  N, must  be a t  least  equal to o r  l a rge r  than twice the 

number of attr ibutes,  m ,  for the algorithm of this c a s e  to yield 

meaningful resul ts .  

x. I s ,  then Allais demonstrates  a m o r e  explicit relationship between 

N, m and the LMS algorithm of Table I. [41 Another interest ing pro-  

per ty  of the LMS algorithm is pointed out by Groner [23]. 

out that the w = {ao, a} which minimizes  IIAw - Po 11 
expressed as 

In the absence of any probabilist ic infor- 

If we allow ourselves  the luxury of gaussian 

1 

It tu rns  
A 2 

can a l so  be 

where 

(VI-8) 
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i i ps = sample mean of c lass  H 

i zi = sample covariance of c lass  H . 
S 

Furthermore,  the Ita II in  Eq. (VI-8) a lso maximizes the Maholanobis 

[ 51 distance cri terion 

(VI-9) 

which has the simple interpretation of maximizing interclass  distance 

and minimizing total dispersionof the projections of the patterns onto 

the decision surface f(x). 

Eq. (VI-8) can be further generalized. Pe terson  and Mattson ~ 3 8 1  

have shown that for a l inear  decision function of the type of Eq. (VI-1) 

and a cr i ter ion function J which depends only on sample means and 

covariances of the two classes,  the optimal Itatt i s  given via 

(VI- 10) 

* where k and kl a r e  constants that can be determined. 
0 

While these connections of the l inear  decision function and the 

statist ical  parameters  of the sample patterns a r e  interesting, they do 

not completely answer the generalization question in t e r m s  of the 

e r r o r  probabilities a and p of (111-3) and (111-4). 

A recent important resul t  of Cover and Hart  (1 967)11 61 is a n  

They show that if we  classify a sample by exception to this point. 

the classification of i t s  neares t  (according to some distance measu re )  

* The validity of (VI-10) is ,  of course,  still good if we replace sample 
means and covariances by t rue  mean and covariances.  
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neighboring sample of known classification, the e r r o r  probability of 

such a decision is bounded from above by twice the optimal Bayes e r r o r  

probabilities of section III(ii) when all the underlying probabilities a r e  

known. This Nearest  Neighbor decision function is  originally due to 

Fix and Hodges [531 . 

Two other statist ical  techniques commonly used in  data analysis 

called "jacknife If and "leaving-one-out ft[33J may be useful to shed 

further light on this question. This technique consists of successively 

solving a s e r i e s  of optimization problems each time leaving out a 

different sample pattern. Variation in  the solutions of these problems 

will then indirectly provide a quantitative answer to the adequateness 

of assumption (i). This approach apparently has not been exploited in  

the usual pattern classification l i terature.  

The Characterization Problem 

Although we conveniently avoided the question of how to  choose 

a mapping 4 : z + x  the question is  nevertheless a n  important one. 

There  do not seem to be many generally applicable schemes which 

posses s  noteworthy properties that a r e  independent of the particular 

type of recognition problems in  question. 

Watanabe (1 965) [503 does, however, f i l l  the requirement. Consider 

An important resul t  due to 

the (sample) covariance matr ices  of each class ,  .Z 1 and Z 

l inear  combination 

and the 
Z Z 

Z =  P(H1)Z 1 t P(Ho)Z 
Z Z 

(VI-1 1) 

Let the dim. (z)  = p which is  usually very  large compared to the desired 

dimension fo r  x, m. Let the vectors t l ,  t2, . . . , t be the normalized 
P 
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eigenvectors of Z ordered according to k l ( Z )  3 X2(Z) 3 . . . 
The t. Is form a basis  in  p space. 

k (Z).  
P 

>k We may  write 
1 

T 
i z = x.t .  with x. = z t 

1 1  1 
i= 1 

(VI- 12) 

1 1 2  0 2 & ,  The magnitude of x. 1 o r  more  accurately P (H )(x. 1 ) t P(Ho)(xi)  

can be considered a s  a good measu re  of the extent to which the coordi-  

i 

nate vector t. i s  useful in  representing the members  of the two c l a s ses .  

It turns  out i n  this set  up that the following propert ies  a r e  t rue :  
1 

m 
2 - x . t . )  t P(Ho)(zo  - 

1 1  xiti)\ = 
i= 1 J i= 1 

2 
1 1  

i=l  i= 1 S i 

(VI- 13) 

i . e .  the t l  coordinate system has the leas t  square approximation 

property . 
(ii) The t. coordinate system minimizes the entropy function 

1 

i= 1 

(VI- 14) 

among all possible coordinate sys tems,  where e. 1s a r e  as defined 

above. 

and (VI-14)) characterization of the at t r ibutes  in  t e r m s  of the large 

1 

(i) and (ii) imply that there  exis ts  a natural  (according to (VI-13) 

eigenvectors of the composite covariance matrix of the problem. 

';c They constitute the Karhunen-Loeve coordinate sys tem.  
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This phenomenon is related to the method of factor analysis and which 

we shall  encounter again in  section VIII. 

Extension to Nonlinear f(x1 

Once the approach for  the linear case  is c lear ,  the extension to the 

nonlinear case  i s  conceptually straightforward. 

equalities, we deal with nonlinear inequalities o r  piecewise l inear 

inequalities. 

Instead of l inear in- 

Various established o r  ad hoc techniques in  non-linear 

programming can be brought to  bear on the abstraction problem [421 . 

Arkadev and B r a ~ e r m a n ' ~ ]  have suggested a n  algorithm which 

t r i e s  to a r r ive  at a piecewise linear f (x)  f rom the given set  of c lass i -  

fied X I S .  

separate  the given samples.  

fails to classify them, more  hyperplanes are connected to i t  until all 

given samples a r e  correct ly  classified. 

of the planes are deleted giving a piecewise linear f(x). 

The algorithm proceeds t o  find the best hyperplane to 

As more  samples come and this plane 

Finally all redundant portions 

VII. Case  E. Data Type (iii) Only Given (Stochastic Methods) 

The algorithms described in section VI with the exception of 

the NN algorithm, despite their  simplicity and practical  usefulness, 

suffer  one general  drawback i n  t e rms  of relating the decision func- 

tions obtained to a quantitative evaluation of its generalization capa- 

bil i t ies.  Since the latter question i s  best  answered in  t e r m s  of e r r o r  

probabilities, o r  equivalently the knowledge of P ( H  x), some pro-  

babilistic s t ructure  will have to be put back into the formulation of 

the problem, implicitly o r  explicitly. 
i 

One approach to  this problem i s  to consider that P ( H  /x) as a 

function of x can be expanded i n  a se r i e s .  Let us  consider 
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A 1 1 
f(x) = P(H /x) - P(Ho/x)  2P(H /x) - 1 

(VII-1) 

where o.(x)  is  some c l a s s  of complete (possibly orthonormal) function 

which one conveniently a s sumes  to be given as a resul t  of solving the 

1 

characterization problem. F o r  every  given sample pattern,  there  

corresponds a +[x(i)] o r  d( i ) .  The problem is then simply reduced 

to the determination of the pa rame te r s ,  a 

the values of the function a r e  measured  a t  randomly selected points. 

of a function f(x) when 
j '  

This is essentially the approach taken by Aizerman, Baverman and 

R ~ z o n o e r [ ~ ] ,  T ~ y p k i n ' ~ ~ ] ,  Blaydon and Hor8], Kashyap and Blaydon [291 , 

Patterson,  Wagner and W ~ m a c k [ ~ ~ ] ,  and Nicolic and F u  [351*. Define 

a classification variable f[x(i)]  by 

1 x(i) E H 

-1 x(i) H' 

1 

(VII- 2) t [ X ( i ) l  = 

One may visualize f ( i )  as a noisy measurement  of the value of the 

function f(x) at the sample point (pat tern)  t(i).  

where v(i)  are independent random variables  with 

E[v(i)] = [ I  - f(i)]P[Hl/x(i)]  4- [ - I  - f(i)][l - P ( H  1 /X( i ) )1  

1 1 1 
= 2[1 - P ( H  /x(i)]P(H /x( i ) )  - 2P(H1/x(i))(1 - P ( H  /x(i))] = 0 

(VII- 4) 

'k These methods a r e  a l so  called '!Potential Function" methods['l], in  
the Russian l i terature .  
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Now consider the minimization of the regress ion  function 

T 2  J = Min E{ - a 411 } (VII- 5) 
a 

which in  view of Eqs. (VU-3-VU-4) can  be shown to be equivalent to 

1 T 2  J = Min E{ IIf(x) - a } 
a 

(VII- 6) 

Thus i f  one finds a finite dinxzisional a which m-inimizes J in  Eq. (VII-5) 

then one has a l so  found the optimal mean square approximation to f(x).  

A well known method for  minimization of regress ion  functions is via 

stochastic approximation using the given noisy sample values of the 

function. We have 

(VII- 7) 

(V I1 - 8) 

With mild assumptions on 4, the algorithm of Eq. (VII-7) is known to  

converge w. p.  1. to a'" where 

T 2  
Hence = a r g  min  E{ IIf(x) - a 411 } 

This constitutes a learning scheme with teacher  which is asympto- 

tically optimal in  a mean square sense w. r .  t .  the classification 

probabilities. Another way of visualizing (VII-7) is  to note that 

and (VII-7) is simply the stochastic analog of the gradient method for 

minimization. In fact, i f  one considers instead 
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where 

A S = [ E  

one has  the analog 

converges faster  . 
may substitute ins 

9oT)I- (VU-  10) 

of the second order  descent method which generally 

Since S in Eq. (VII-10) is not given in  general ,  one 

ead 

(VU-11)  

j=  1 

Not surprisingly, the recurs ive  computation of P(i) is governed by 

(VII-12) 

which is  a special case  of Eq. (IV-9). Fur thermore ,  a(i t 1) from 

Eq. (VII-7) has the property that 

i t 1  
2 a(i t 1)  = a rg .  min. 2 [c( j )  - aT+( j ) l  

j = l  

In other words, it is  a lso the solution of the LMS algorithm of section V I .  

Using the method of stochastic approximation, one can  showi8] that 

Eq. ( V U - 7 ' )  a l so  converges w. p. 1. to a*, thus, furnishing additional 

rationalization f o r  the LMS algorithm. 

The choice of the base function se t  4 has been so far left open. 

[91 A part icular  approach to  the problem has been suggested by Br ick  . 
i Instead of expending f(x)  i n  a se r i e s ,  p(x/H ) m a y  be expended in  a 

s e r i e s  of orthonormal functions, the normalized Hermi te  functions. 

Brick has  shown that these coefficients appear  as some ensemble 

average which, given cer ta in  a pr ior i  information, can  be precomputed. 
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In case  of ergodic processes ,  

be replaced by t ime averages 

however, these ensamble averages can 

and can be easily determined experi-  

mentally given a set  of classified samples for init ial  learning. 

Furthermore,  if the system parameters  a r e  known to change g ra -  

dually a bootstrap updating of these coefficients is possible during 

the run, improving continuously on the "Learnedf' coefficients. 

The main advantage of this scheme is the possibility of imple- 

mentation in  circuit  form for ergodic processes ,  where the coefficients 

appear only as amplifier gains which can be easily preadjusted o r  

changed automatically. 

sion depends, however, on the complexity of the form of p(x/H ) .  

pract ical  situations the implementation may not be feasible for any 

moderately complex system. 

VIII. 

The number of t e r m s  to be used in the expan- 

i In 

Case  F - Data Type (iv) Given Only 

This is the extreme case  in  pat tern classilication where minimal 

information is available for the design of f (x) .  Not much has been 

reported in  the l i terature  about the approaches fo r  this case which 

are often heuristic o r  experimental, justified only by the fact that 

they "work" in  some sense according to the author. Analytically, 

the problem can be resolved in  either one of two ways: 

(a) Reintroduce, explicitly or  implicitly, some cr i ter ion of separa-  

t ion onto the set  of unclassified sample patterns.  This i s  used in 

conjunction with the same algorithms of the case  D in  a bootstrap 

fashion, i. e .  one uses  the result of classification at one i teration to 

produce the "classified If learning sample for the learning cycle. 

example a bootstrap algorithm results i f  we t r y  to rewrite Eq. (VII-5) as  

F o r  
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a 
(VIII-3) 

has  examined this cr i ter ion function for a l inear f(x) i .  e .  Miller [311 

where 4 is only x.  F o r  this case J becomes 

T T 2  
J '  = Min E{ [la x - Sgn(a x) 11 } 

a 
(V111-3I) 

and a n  algorithm paral le l  to Eq. (VII-7) may be given a s  

(VIII-4) 

with 

Miller found that the J '  surface,  in  general, has  saddle points and 

local minimums. In the case  of gaussian distributions with the same 

covariance matr ix  and p 

mums  with the same minimum value and the algorithm of Eq. (VIII-4) 

- - the J' surface has  two local mini-  1 - P o ,  

converges to one of the two minima w. p. 1. However, in this case  

the value of a at one minimum i s  the negative of the value a t  the 

other.  As the decision takes place according to aTx 0 the decision 

surface using either value mere ly  resul ts  in the relabelling of the 

c l a s ses .  

It should be pointed out that i f  this externally imposed cr i ter ion 

of separation happens to resemble the natural  c r i te r ion  of separation 

then a l l  is well. F o r  example, consider the two-dimensional 

examples shown in Fig. 2 where the actual identity of the sample 

points is unknown to the classi f ier .  One can nevertheless  require  

that a separating plane (l inear decision function) be constructed with 
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the normal  Ita." coincide with the direction of the maximal eigenvector 

of the covariance mat r ix  of the sample points, i .  e .  

a parallel  to the max eigenvector of (A A) (VIII - 5) T 

where 

If this eigenvector direction is determined via the usual i terative 

power method then one has  derived a "learning" scheme which "works. 

However, it  i s  equally obvious that had the two c l a s ses  been d is t r i -  

buted a s  in F i g .  3 the learning scheme would have failed. The above 

approach actually formed the essence of a very  successful bootstrap 

self-correction scheme by Nagy and S h e l t ~ n [ ~ ~ ]  for character  

recognition and is closely related to the method of principal compo- 

nent in  factor analysis. 

A slightly difference approach in  introducing a cr i te r ion  has 

been taken by Rogers and T a n i m ~ t o [ ~ ] .  A distance measu re  dij for  

Assuming there a r e  only two c lasses ,  we define a homogeneity 

function for each c l a s s .  

tances of the various sample patterns a s  i t s  arguments .  

The function has  dij, the interpair  dis-  

The 

assignment of a given sample pat tern to a par t icular  c l a s s  changes 

the value of the homogeneity function of that class. The cr i ter ion 

of classification is that the two homogeneity functions have minimal 

A =  (VIII- 6) 

x. and x .  may  be defined a s  
1 J 

di j  = g(xi ,x . )  
J 

(VIII-7) 
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difference in  their value. 

follows : 

Analytically we may visualize this as 

Let 

ul(d12,d13,.  . . . . . . . . . .  9 dn- 1, n; rl)  

. . . . . . . . . . .  uO(dl 2,  d l  3, 9 dn- 1, n; 11) 

be the homogeneity functions involved. 

ass igns the usage of a particular d to the evaluation of uo o r  u1 . 

Classification then involves the choice of q such that the difference 

u1 - uo is minimized. 

q is a parameter  which 

* 
i j  

This scheme can be very easily generalized to a mult ic lass  

case  where the number of c lasses  is not known a pr ior i .  

light we shall  encounter it again in  the next section. 

( b )  Attempt a more  o r  l e s s  brute force computation of the learning 

equation (V-1) in section V. The pertinent probability density func- 

tions a r e  approximated by histograms using the given data. 

In this 

Pa t r ick  

WI and Hancock claim convergence of this computational procedure . 
However, little o r  no actual experiences have been reported.  

to the lack of sufficient s ta t is t ics  and the large amount of data 

usually required for histograms to yield good approximations, the 

feasibility of such a scheme remains to  be demonstrated.  

Due 

’:‘ F o r  example: Roger and Tanimoto will successively include m o r e  
and m o r e  d in the evaluation of uo o r  u1 until they exceed a value. 

The assumption here  i s  that each c l a s s  should be homogeneously 
s imi la r .  then some member  of c l a s s  1 

should be c lass  0 and vice ve r sa .  

i j  

If for a given q ,  u1 >> u 
0 ’  
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IX. Multiclass Problem 

So far we have concerned ourselves only with two-class problems.  

A few words about multiclass problems a r e  i n  o rde r .  

In a mult ic lass  problem we have to decide to which of m 

H" the given pat tern vector x belongs. c lasses  H , H , H , . .  ., 
F o r  problems having a probabilistic s t ruc ture  i .  e .  f rom case  A, B, 

C and E,  the extension to a multiclass case  is straightforward. In- 

1 2 3  

stead of considering the likelihood rat io  formed by the two conditional 

probabilities and testing i t  against a threshold for a two-class case ,  

we may  directly consider p(x/Hi) o r  P(Hi/x) and pick the la rges t  

of these.  This procedure is optimal in  the sense  that i t  minimizes 

the e r r o r  probability. 

i 
More generally, we may  define a set of decision functions f (x) 

i and take decisions as x belonging to H i f  

> fJ(x) 

for the problems of case  A, B, C and E 

for all j # i (IX-1) 

= p ( x / ~ ~ )  o r  P(H~[X) (IX-2) 

In the case  of deterministic a lgori thms (nonprobabilistic 

s t ruc tu re )  the extension to multi-class problems is  not a s  natural .  

A mult ic lass  problem i s  usually reduced to a collection of two-class 

problems.  This reduction depends on the separabili ty which exists 

i n  the mult ic lass  problem and may be of th ree  types.  

(i) Each c l a s s  may be separable f r o m  all the r e s t  by a single decision 

sur face .  Then we may  take the decision according to 

> O  i f x  E H ~  

< O  othe r w i  s e 
fi(x, 

Th i s  reduces the mult ic lass  problem to m - 1 two-class problems 
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(ii) Each c lass  may  be separable  f rom each other c lass .  

have -1) two-class problems and a s  many decision functions 

such that 

Now we 

m m  

i j 
> o  i f x  a~~ 

fiJ (x) given x belongs to  H o r  H 
< o  i f x  ~ H J  (XI- 3) 

The unknown x is classified as Hi only if" 
. .  

?J(x)  > o for all j # i 
i (iii) There  exist m fi(x) such that x belongs to H only if 

fi(x) > fJ(x) for all j + i 
Note that this i s  a special  ca se  of (ii) as we may define 

(XI-4) 

fiJ(x) = h ( x )  - rj(x) for  a l l  j # i (XI- 5) 

In c a s e s  A, B, C and E, as  we noted e a r l i e r ,  f l(x) of Eq. (XI-4) 

a r e  the conditional probabili t ies.  F o r  determinis t ic  c a s e  D a 

cr i te r ion  of separation is introduced. Fo r  example one may consider 

the inverse  of distance c r i te r ion  which is the extension of the Neares t  

Neighbor approach to this ca se .  

The way we may  t ry  to  reduce a mult ic lass  problem to a se t  

of two-class problems depends on the individual problem. 

be pointed out that i f  we a r e  not res t r ic t ing  f (x) to be of a par t i -  

cular  f o r m  (linear o r  quadratic e tc)  then the distinction of these 

three types is  ar t i f ic ia l  as we can always find suitable f (x) to  use 

It should 

i 

i 

with any of the desired three  types.  

':' 
cases  where x coming f rom Hk, k # i, j i s  being t r ied .  

Some irrelevant  resu l t s  w i l l  be obtained in the p rocess  f rom the 
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Though we have presented all the algorithms as they a r e  

applicable to two-class problems, often the authors have extended 

i t  to the multiclass case.  The number of c lasses  i s  assumed 

known in all these schemes.  

and Tanimoto [421 mentioned under case F. 

use is independent of the knowledge of the number of c lasses .  

computing an  auxiliary index of fftypicality'l they permit  the proce - 

dure to adjust i tself  to produce automatically the number of c lasses  

in  order  to satisfy a homogeneity cri terion. 

One exception is the paper by Rogers 

The procedure they 

By 

X.  Conclusion 

Based on the above survey and analysis, a few remarks  

(perhaps controversial)  seem in order :  

(i) Roughly speaking, classification algorithms can be broadly divided 

into two groups; probabilistically o r  nonprobabilistically based. The 

f o r m e r  group, comprising cases  A-C, enjoys the obvious advantage 

of being easy to a s s e s s  the generalization ability of the resul ts .  On 

the other hand, it is often difficult to justify the availability of the 

required input data. 

jus t  the reverse .  

ments  i t  made precise  quantitative evaluation of performance much 

m o r e  involved and difficult. 

a s s u m e  that as our analytical ability advances this difficulty will 

gradually ease .  

the recursive application of the Bayes Rule while that of the la t ter  

is the i terative solution of an optimization cri terion. 

a r e  fundamental to  stochastic and deterministic control theory. 

The latter group representing cases  D - F  is 

By being more realist ic on input data require- 

Although i t  seems reasonable to 

The main "learning" tool for the f i r s t  group is  

Both techniques 

It 
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is expected that further c r o s s  fertilization will take place between 

these two fields. 

(ii) "Characterization" remains to be a major  open problem. 

(iii) Relatively l i t t le experimentation with these algorithms have 

been ca r r i ed  out with r e a l  life classification problems compared 

to the number of proposed approaches.  

general cri t icism of the papers  but a comment on the difficulties of 

obtaining r e a l  da t a .  

is that of converting o r  generating enough samples of x( i )  f rom or i -  

ginal data in  r e a l  problems. 

specially designed data processing machines a r e  needed. 

it is the authors '  belief that this often represents  the major  cost  of 

a pattern classification project.  Once this is  done, the solution of 

the abstraction problem tends to be straightforward. 

This is  not so much a 

An often overlooked and unappreciated problem 

Enormous data processing t ime o r  

In fact ,  

In this paper we have attempted a classification of the various 

pattern classification techniques that have been reported in  the 

l i terature .  The purpose has  been to t r y  to lay ba re  the underlying 

statist ical  and mathematical principles used in the development of 

these algorithms. 

can meaningful comparisons among the numerous approaches be made. 

Furthermore,  deficiencies as well as advantages of the various 

schemes hopefully can be made obvious and p rogres s  of the field 

a s  a whole can be sped up. 

Only when such a classification is  complete then 

A complete coverage of the l i terature  in  this field is  neither 

possible nor desirable.  

fication is reasonably complete and workable, and future approaches 

It is  nevertheless believed that our c lass i -  
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can be fitted into this framework, i .  e .  our scheme possesses  the 

generalization property.  

appeared in l i terature.  

to find their  case  classifications. 

to their  bibliography for  the various cases .  

There a r e  many other papers  which have 

We leave i t  a s  an  excerc ise  for  the reader  

The authors welcome additions 
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